1. Circuits—Theory : Circuit components; network graphs; KCL, KVL; Circuit analysis methods : nodal analysis, mesh analysis; basic network theorems and applications; transient analysis : RL, RC and RLC circuits; sinusoidal steady state analysis; resonant circuits; coupled circuits; balanced 3-phase circuits. Two-port networks.
2. Signals and Systems : Representation of continuous-time and discrete-time signals and systems; LTI systems; convolution; impulse response; time-domain analysis of LTI systems based on convolution and differential/difference equations. Fourier transform, Laplace transform, Z-transform, Transfer function. Sampling and recovery of signals DFT, FFT Processing of analog signals through discrete-time systems.
3. EM. Theory : Maxwell's equations, wave propagation in bounded media. Boundary conditions, reflection and refraction of plane waves. Transmission lines : travelling and standing waves, impedance matching, Smith chart.
4. Analog Electronics : Characteristics and equivalent circuits (large and small-signal) of Diode, BJT, JFET and MOSFET. Diode circuits : Clipping, clamping, rectifier. Biasing and bias stability. FET amplifiers. Current mirror; Amplifiers : single and multi-stage, differential, operational feedback and power. Analysis of amplifiers; frequency-response of amplifiers. OPAMP circuits. Filters; sinusoidal oscillators : criterion for oscillation; single-transistor and OPAMP configurations. Function generators and wave-shaping circuits. Linear and switching power supplies.
5. Digital Electronics : Boolean algebra; minimisation of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits : arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Logic implementation using programmable devices (ROM, PLA, FPGA). 6. Energy Conversion : Principles of electromechanical energy conversion : Torque and emf in rotating machines. DC machines : characteristics and performance analysis; starting and speed control of motors, Transformers : principles of operation and analysis; regulation, efficiency; 3-phase transformers. 3-phase induction machines and synchronous machines : characteristics and performance analysis; speed control.