GkSeries.com

NCERT Solutions for class 12 Maths | Chapter 12 - Linear Programming

(1) Z = 6x + 21 y, subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at
[A] (4, 0)
[B] (28, 8)
[C] (2, 7/2)
[D] (0, 3)
Answer: (2, 7/2)
(2) Maximize Z = 10 x1 + 25 x2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5
[A] 80 at (3, 2)
[B] 75 at (0, 3)
[C] 30 at (3, 0)
[D] 95 at (2, 3)
Answer: 95 at (2, 3)

DOWNLOAD CURRENT AFFAIRS PDF FROM APP

(3) Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0
[A] 16 at (4, 0)
[B] 24 at (0, 4)
[C] 24 at (6, 0)
[D] 36 at (0, 6)
Answer: 36 at (0, 6)
(4) Maximize Z = 11 x + 8y subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0.
[A] 44 at (4, 2)
[B] 60 at (4, 2)
[C] 62 at (4, 0)
[D] 48 at (4, 2)
Answer: 60 at (4, 2)
(5) The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0 is
[A] 300
[B] 600
[C] 400
[D] 800
Answer: 600
(6) Objective function of a linear programming problem is
[A] a constraint
[B] function to be obtimized
[C] A relation between the variables
[D] None of these
Answer: function to be obtimized
(7) Refer to Question 18 maximum of Z occurs at
[A] (5, 0)
[B] (6, 5)
[C] (6, 8)
[D] (4, 10)
Answer: (5, 0)
(8) Maximize Z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0
[A] 59 at (9/2, 5/2)
[B] 42 at (6, 0)
[C] 49 at (7, 0)
[D] 57.2 at (0, 5.2)
Answer: 59 at (9/2, 5/2)
(9) The maximum value of Z = 4x + 2y subject to the constraints 2x + 3y ≤ 18, x + y ≥ 10, x, y ≤ 0 is
[A] 36
[B] 40
[C] 30
[D] None of these
Answer: None of these
(10) A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of a L.P.P. is called its
[A] Unbounded solution
[B] Optimum solution
[C] Feasible solution
[D] None of these
Answer: Feasible solution
(11) Z = 20x1 + 202, subject to x1 ≥ 0, x2 ≥ 0, x1 + 2x2 ≥ 8, 3x1 + 2x2 ≥ 15, 5x1 + 2x2 ≥ 20. The minimum value of Z occurs at
[A] (8, 0)
[B] (5/2, 15/4)
[C] (7/2, 9/4)
[D] (0, 10)
Answer: (7/2, 9/4)
(12) Maximize Z = 3x + 5y, subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0
[A] 20 at (1, 0)
[B] 30 at (0, 6)
[C] 37 at (4, 5)
[D] 33 at (6, 3)
Answer: 37 at (4, 5)
(13) In equation 3x – y ≥ 3 and 4x – 4y > 4
[A] Have solution for positive x and y
[B] Have no solution for positive x and y
[C] Have solution for all x
[D] Have solution for all y
Answer: Have solution for positive x and y
(14) Of all the points of the feasible region for maximum or minimum of objective function the points
[A] Inside the feasible region
[B] At the boundary line of the feasible region
[C] Vertex point of the boundary of the feasible region
[D] None of these
Answer: Vertex point of the boundary of the feasible region
(15) Feasible region in the set of points which satisfy
[A] The objective functions
[B] Some the given constraints
[C] All of the given constraints
[D] None of these
Answer: All of the given constraints
(16) Refer to Question 18 (Maximum value of Z+ Minimum value of Z) is equal to
[A] 13
[B] 1
[C] -13
[D] -17
Answer: -17
(17) The maximum value of Z = 3x + 4y subjected to contraints x + y ≤ 40, x + 2y ≤ 60, x ≥ 0 and y ≥ 0 is
[A] 120
[B] 140
[C] 100
[D] 160
Answer: 140
(18) Maximize Z = 6x + 4y, subject to x ≤ 2, x + y ≤ 3, -2x + y ≤ 1, x ≥ 0, y ≥ 0
[A] 12 at (2, 0)
[B] 140/3 at (2/3, 13)
[C] 16 at (2, 1)
[D] 4 at (0, 1)
Answer: 16 at (2, 1)
(19) The corner point of the feasible region determined by the system of linear constraints are (0, 0), (0, 40), (20, 40), (60, 20), (60, 0). The objective function is Z = 4x + 3y. Compare the quantity in Column A and Column B
Column A Column B
Maximum of Z 325
[A] The quantity in column A is greater
[B] The quantity in column B is greater
[C] The two quantities are equal
[D] The relationship cannot be determined On the basis of the information supplied
Answer: The quantity in column B is greater
(20) The feasible region for a LPP is shown shaded in the figure. Let Z = 3x – 4y be the objective function. Minimum of Z occurs at
[A] (0, 0)
[B] (0, 8)
[C] (5, 0)
[D] (4, 10)
Answer: (0, 8)

Please share this page

Chapters

Click Here to Read more questions

Teacher Eligibility Test