A harmonic function is analytic if it satisfies the Laplace equation. If ๐‘ข(๐‘ฅ, ๐‘ฆ) = 2๐‘ฅ2 โˆ’ 2๐‘ฆ2 + 4๐‘ฅ๐‘ฆ is a harmonic

Q. A harmonic function is analytic if it satisfies the Laplace equation. If ๐‘ข(๐‘ฅ, ๐‘ฆ) = 2๐‘ฅ2 โˆ’ 2๐‘ฆ2 + 4๐‘ฅ๐‘ฆ is a harmonic function, then its conjugate harmonic function ๐‘ฃ(๐‘ฅ, ๐‘ฆ) is

             (A) 4๐‘ฅ๐‘ฆ โˆ’ 2๐‘ฅ2 + 2๐‘ฆ2 + constant

             (B) 4๐‘ฆ2 โˆ’ 4๐‘ฅ๐‘ฆ + constant

             (C) 2๐‘ฅ2 โˆ’ 2๐‘ฆ2 + ๐‘ฅ๐‘ฆ + constant

             (D) โˆ’4๐‘ฅ๐‘ฆ + 2๐‘ฆ2 โˆ’ 2๐‘ฅ2 + constant

Ans: 4xy โˆ’ 2x2 + 2y2 + constant

Sol:

We will be happy to hear your thoughts

Leave a reply

Gkseries.com
Logo
Register New Account