Gkseries.com

Let π‘ˆ = {1,2, … , 𝑛}. Let 𝐴 = {(π‘₯, 𝑋)|π‘₯ ∈ 𝑋, 𝑋 βŠ† π‘ˆ}. Consider the following two statements on |𝐴|

Let π‘ˆ = {1,2, … , 𝑛}. Let 𝐴 = {(π‘₯, 𝑋)|π‘₯ ∈ 𝑋, 𝑋 βŠ† π‘ˆ}. Consider the following two statements on |𝐴|.
Q.Let π‘ˆ = {1,2, … , 𝑛}. Let 𝐴 = {(π‘₯, 𝑋)|π‘₯ ∈ 𝑋, 𝑋 βŠ† π‘ˆ}. Consider the following two statements on |𝐴|.
I.Β Β Β Β Β Β Β Β Β Β  |𝐴| = 𝑛2π‘›βˆ’1
II.Β Β Β Β Β Β Β Β  |𝐴| = βˆ‘π‘›π‘˜=1Β Β Β Β  π‘˜(𝑛) Β Β Β Β Β Β Β Β Β Β 
Which of the above statements is/are TRUE?
Β (A) Only I(B) Only II
Β (C) Both I and II(D) Neither I nor II
Ans: Both I and II

Given, A = {(x, X)∣ x∈X, XβŠ†U }, where U = {1, 2, …,n}.

As we know that The number of k element subsets of a set U with n elements =Β nCk.

The number of possible ordered pairs (x, X) where x ∈ X is kβ‹…Β nCkΒ for a given value of k from 1 to n. So total number of ordered pairs in A,

Exit mobile version