For More Questions Click Here

Q1. A ball is projected with velocity $10 \mathrm{~m} / \mathrm{sec}$ at angle of 30° with the horizontal surface. The speed of the ball after 1 second will be (Use g=10m/sec ${ }^{2}$)
a. $5 \mathrm{~m} / \mathrm{sec}$
b. $20 \mathrm{~m} / \mathrm{sec}$
c. $8 \mathrm{~m} / \mathrm{sec}$
d. $10 \mathrm{~m} / \mathrm{sec}$
e. $12 \mathrm{~m} / \mathrm{sec}$

Q2. A ball is projected with velocity $10 \mathrm{~m} / \mathrm{sec}$ at angle of 30° with the horizontal surface. The time taken by ball to reach the ground is
a. 1 sec
b. 2 sec
c. 3 sec
d. 4 sec
e. 5 sec

Q3. A ball is projected with velocity $10 \mathrm{~m} / \mathrm{sec}$ at angle of 30° with the horizontal surface. The range of the projectile is
a. 10 m
b. $10 \sqrt{ } 3 \mathrm{~m}$
c. $20 \sqrt{ } 3 \mathrm{~m}$
d. $30 \sqrt{ } 3 \mathrm{~m}$
e. $40 \sqrt{ } 3 m$

Q4. A ball is projected with velocity $10 \mathrm{~m} / \mathrm{sec}$ at angle of 30° with the horizontal surface. The maximum height attained by the projectile is
a. 5 m
b. 10 m
c. 15 m
d. 20 m
e. 25 m

Q5. A ball is projected with velocity $10 \mathrm{~m} / \mathrm{sec}$ at angle of 30° with the horizontal surface. The angle made by the line joining point of projection with the point of maximum height is
a. $\tan ^{-1} 2 / \sqrt{ } 3$
b. $\tan ^{-1} 1 / 2 \sqrt{ } 3$
c. $\tan ^{-1} \sqrt{ } 3$
d. $\tan ^{-1} 1 / \sqrt{ } 3$
e. $\tan ^{-1} \sqrt{ } 3 / 2$

Q6. The angle of projection for the range of projectile to be equal to its maximum height is
a. $\theta=\tan ^{-1}(2)$
b. $\theta=\tan ^{-1}(3)$
c. $\theta=\tan ^{-1}(4)$
d. $\theta=\tan ^{-1}(2 / \sqrt{ } 3)$
e. $\theta=\tan ^{-1}(1 / \sqrt{ } 3)$

Q7.For a projectile fired with a certain velocity, the Maximum possible Range and the Maximum height attainable are related as
a. $\mathbf{R}_{\text {max }}=\mathbf{2 H} \mathbf{H a x}_{\text {max }}$
b. $\mathrm{R}_{\text {max }}=\mathrm{H}_{\text {max }} / 2$
c. $\mathrm{R}_{\text {max }}=3 \mathrm{H}_{\text {max }}$
d. $\mathrm{R}_{\text {max }}=\mathrm{H}_{\text {max }}$
e. $R_{\text {max }}=-H_{\text {max }}$

Q8. A ball projected at an angle θ, attains a maximum height H_{1} and if the ball is projected at angle of $(90-\theta)$ and the maximum height attained by the ball is H_{2}.
Then the range of projectile will be
a. $\mathrm{R}=\sqrt{ } \mathrm{H}_{1} \mathrm{H}_{2}$
b. $\mathrm{R}=\sqrt{ } \mathrm{H}_{1} \mathrm{H}_{2} / 2$
c. $\mathrm{R}=2 \sqrt{ } \mathrm{H}_{1} \mathrm{H}_{2}$
d. $R=3 \sqrt{ } H_{1} H_{2}$
e. $\mathrm{R}=\sqrt{ } \mathrm{H}_{1} \mathrm{H}_{2} / 3$

Q9. The motion of a projectile is described by the equation $y=a x-b x^{2}$. The range of projectile is
a. a^{2} / b^{2}
b. $a / 2 b$
c. $2 a / b$
d. a / b

Q10. A body is projected with kinetic energy E so as to attain
maximum horizontal range. Its potential energy at the highest point is
a. E
b. $\mathrm{E} / 2$
c. 2 E
d. $\sqrt{ } 2 E$

